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Time-Domain Design-Oriented Parametrization
of Truncated Periodic Strip Gratings

L. Carin, Member, IEEE, L.B. Felsen, Life Fellow, IEEE, and M.R. McClure, Member, IEEE

Abstract— Asymptotic methods are used to develop an algo-
rithm that parametrizes time-domain plane-wave interaction with
a truncated grating of periodically spaced, perfectly conducting
strips in free space. By distinctly displaying the edge effects
as well as the truncated Floquet mode contributions from the
body of the grating, the model contains the necessary building
blocks for time-domain, finite-grating design. Short-pulse, plane-
wave diffraction results computed from the model are shown to
agree well with numerical reference data, and salient properties
of the time-domain Floquet-mode constituents in the model are
highlighted via time-frequency representations.

ECENTLY, we have developed an algorithm for nu-
merical as well as analytic-asymptotic modeling of two-
dimensional time-harmoni¢ and transient plane-wave scatter-
ing from finite gratings composed of coplanar, infinitesimally
thin, perfectly conducting strips in free space [1]; the method
of moments (MOM) is used to determine the currents induced
on the strips. Involving edge diffractions from the ends of the
grating, truncated Floquet modes from the bulk, and transi-
tion functions across Floquet-mode shadow boundaries, these
constituents furnish the wave-optical tools for finite grating
design. The algorithm for time-harmonic excitation has been
described in a recent communication [2]; we demonstrate here
corresponding results for short-pulse time-domain scattering.
The flat strips are placed in the z = 0 plane and the
incident wave vector is oriented perpendicularly to the y-
directed strip edges. Both TE and TM polarizations, with the
electric and magnetic field vectors parallel to y, respectively,
are considered. It was shown in [2] that, for N strips. a
particular component of the time-harmonic scattered field u,
can be expressed approximately as

M

where d is the period of the finite array, #; is the angle
of incidence with respect to the z axis, ¢ is the free-space
propagation speed, and an exp [—2wt]| time dependence has
been suppressed. The asymptotically evaluated expression for
uy, which represents phenomena associated with the edge
of the left-most unit cell, contains an edge-diffraction-like

us = up — upexp|—ik,Ndsinb;], k, = w/c,
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term, truncated Floquet modes, and Fresnel transition functions
for the edge-induced Floquet-mode shadow boundaries. The
expression u,. has a similar structure with respect to the edge of
the right-most unit cell. As given in [2, (4)], these expressions
are inconvenient for inversion into the time domain because
the shadow-boundary transition function and the contribution
from a particular Floquet mode are each represented dis-
continuously, although their combination is continuous. This
suggests replacement of each pair of discontinuous terms with
a single continuous function [1], yielding

Ulr ~ 4/ zw/Ql,relQl’re~zr/4g(0l,rs 6:)

+sgn(Brr) Y imap e s On=ler fefy, ], (2)

where g(6;,,0;) is the Floquet-mode-dependent edge-
diffraction coefficient, €}, = k,L;, , L;, are respectively
the distances to the observer from the edges of the left-
and right-most unit cells, §; ,. are respectively the inclination
angles (with respect to the z axis) of rays from the edges
of the left- and right-most unit cells to the observer (sec
Fig. 1 in [2]), ¢n(w) is the propagation angle and a,,(w)
the amplitude of the mth Floquet mode on an infinite array,
erfc(-) denotes the error function compliment, sgn(-) equals
1 for positive arguments and -1 for negative arguments, and
Ym = sgn(&lﬂ,%/Ql’r/Zei“/‘l((ﬁm ~0;,). The sum in (2)
extends over all propagating Floquet modes.

The time-dependent fields 4(zx, z;¢) corresponding to the
time-harmonic fields u(z, z; w) are related as follows:

[eo]

/ us(x, z;w) F(w)e”™ “tdw

us (@, 238) = o

Flw) = / F(B)e™tdt, 3)

where f(t) is the temporal behavior of the incident waveform.
The approximate asymptotic expressions in (1) and (2) will be
used for us(x, z; w) such that the time-domain asymptotics can
be interpreted in terms of wavefronts emanating from the edges
of the array and time-domain Floquet modes from the bulk.
The phase €;, for the edge-diffraction-like (first) term in
(2) is nondispersive and therefore not amenable to saddle-point
asymptotics; we have inverted this contribution numerically
by FFT from the frequency domain. With regard to the
asymptotic inversion of the Floquet-mode terms in (2), the
functions a,, and erfc are treated as amplitude terms. In
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Fig. 1. Schematization of TD mth Floquet behavior with respect to left edge
of truncated array. The angle ¢, (t, z) tags the propagation direction of the
mth Floquet mode with local frequency @, (t) away from the array surface.
For ¢, < 67, the mode contributes to the scattered field, but it does not
contribute for ¢,, > 6;. The local region, where the scattered field originates
on the array, moves to the left with increasing time. Instantaneous shadow
boundary of the mth Floquet mode is also shown. '

rectangular coordinates, the phase of the mth Floquet mode
becomes U, (z,z;w,t) = kym(w)z + kym(w)z — wt |, with
kem(w) = (2mn/d) — kosin6; and k., = /K2 — k2, -
Restricting to normal. incidence (#; = 0) for simplicity, the
m = 0 Floquet mode also has a nondispersive phase and is
therefore converted to the time domain via the FFT. All higher
order propagating Floquet modes (m # 0) have a nonlinear
frequency dependence in the phase and can be evaluated
approximately via saddle-point asymptotics. It is easily verified
that the saddle-point frequencies w,,, defined by 8¥,, /0w = 0
are given explicitly by

er2m|m]
da /72 — 527

where 7 = ct . After the saddle points have been determined,
‘the asymptotic saddle-point approximation [3] for the time-
domain truncated m # 1 Floquet modes are computed easily
[1]. The interpretation of the time-domain results, however,
can be carried out directly from the saddle-point condition (4)
and Fig. 1.

Recalling that, for normal incidence, the frequency-
dependent propagation angle of the mth Floquet mode on an
infinite array satisfies sin ¢.,(w) = 2mme/wd, one finds that
the angle of propagation ¢,,(z,t) of the mth Floquet mode
at time ¢ with saddle point &y, (2,t) satisfies sin ¢ (2,t) =

om(z,t) =+ m # 0, 0, =0, @&

\/1 = (2/7)* . Thus, the ficlds at a given relative time ¢ can
be attributed to scattering from that particular location on
the truncated array which has a signal transit time ¢ to the
observer (Fig. 1). Note that the angle ¢,,,(z,t) is independent
of m and is therefore the same for all Floquet modes, and
that the saddle-point frequency @, (z, t) increases with modal
index m but decreases with increasing time ¢ (approaching
the cutoff wavelength A.,, = d/m of the mth Floquet modes
as t — o00). Moreover, due to the finite bandwidth of the
incident waveform, only a finite number of Floquet modes
will contribute to the scattered field, each with its own unique
time-dependent. frequency.

As depicted in Fig, 1, for the mth Floquet mode, the angle
@(z, t) increases with time until it approaches §;. For ¢(z,t) >
f;, the asymptotic evaluation shows that the Floquet modes
no longer contribute to the scattered field. Similar phenomena
are associated with the right edge of the truncated array. In
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Fig. 2. Time-domain scattered field due to a pulsed plane wave incident
normally on a planar grating composed of 20 infinitesimally thin, perfectly
conducting strips of width and interstrip spacing w. Field is observed
5w directly above the array center. Dots represent results calculated by
summing the asymptotically approximated TD Floquet modes with order
1 < |m| < 10, which cover the frequency range of the pulse spectrum. Curve
represents the results of a reference MOM-FFT algorithm. Arrows identify
pulse arrivals and their points of origin on the array. Time and frequency
dependence of the incident waveform are also shown. The time is normalized
to T, where T = w/e.
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Fig. 3. Time-frequency representation for scattered field due to a pulsed
plane wave incident normally upon a forty-strip grating. The grating period
is d, the strip width is 0.06 d, and the interstrip separation is 0.94 d. The
scattered fields are observed at 35.44 d directly above the right-most edge of
the array. The TD waveform (bottom) was computed using a MOM-FFT
reference algorithm, The left-most figure is a Fourier transform of the
entire TD waveform. Center figure was computed by performing on the TD
waveform a short-time Fourier transform (STFT) with a Gaussian' window
having /T = 1.2. Time is normalized to T', where T = d/c.

addition to the contributions from the higher order Floquet
modes previoulsy discussed, the total time-dependent field also
includes contributions from the m = 0 mode and from edge
diffraction originating at the ends of the truncated array. In
the time domain, each represents a waveform that propagates
without dispersion, appropriately delayed with respect to its
scattering center. ,

Consider a pulsed plane wave incident normally on a 20-
strip planar grating composed of infinitesimally thin, perfectly
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conducting strips of width and interstrip spacing w; the field
observed 5 w directly above the array center is plotted in Fig.
2. The dots represent results calculated by summing the saddle-
point approximations for the time-domain Floquet modes with
order 1 < |m| < 10, which cover the frequency range of the
pulse spectrum. Contributions from the m = 0 time-domain
Floquet mode and from time-domain edge-diffracted fields
have not been included. The dispersionless contribution from
the m = 0 mode affects only the early (specular) return, and
the edge diffraction terms contribute minimally to the observed
signal at observation points in the Floquet-mode illuminated
region of the grating.

To illustrate how to extract the time-dependent Floquet-
mode frequencies from high-resolution short-pulse data, we
consider a 40-strip array with period d such that d/Acent =
2.5, where the wavelength A, corresponds to the center
frequency of the incident waveform. With this incident-pulse
bandwidth, only three higher order Floquet modes are excited.
As in the solid curve of Fig. 2, the time-domain scattered field
was computed by an FFT reference code. A time-frequency
distribution for the scattered signal, obtained by applying to the
scattered field a short-time Fourier transform with a Gaussian
window [4], is shown in Fig. 3. In the early time, the specular
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reflection due to the dispersionless /n = 0 mode contains the
entire frequency content of the incident waveform. As time
evolves, one clearly sees the distinct Floquet modes emerge
with their time-dependent frequencies, which tend toward the
cutoff frequencies d/A,, = m for the m = 1,2, and 3 modes.

The results presented here demonstrate the utility of the
algorithm for calculating and physically interpreting the time-
domain scattered fields from a finite periodic strip grating. The
synthesizing time-domain finite-aperture Floquet modes, with
their time-dependent frequencies, should prove useful in the
design of finite gratings for time-domain applications.
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